While Large Language Models (LLMs) perform exceptionally well at natural language tasks, they often struggle with precise formal reasoning and the rigorous specification of problems. We present MCP-Solver, a prototype implementation of the Model Context Protocol that demonstrates the potential for systematic integration between LLMs and constraint programming systems. Our implementation provides interfaces for the creation, editing, and validation of a constraint model. Through an item-based editing approach with integrated validation, the system ensures model consistency at every modification step and enables structured iterative refinement. The system handles concurrent solving sessions and maintains a persistent knowledge base of modeling insights. Initial experiments suggest that this integration can effectively combine LLMs' natural language understanding with constraint-solving capabilities. Our open-source implementation is proof of concept for integrating formal reasoning systems with LLMs through standardized protocols. While further research is needed to establish comprehensive formal guarantees, this work takes a first step toward principled integration of natural language processing with constraint-based reasoning.
翻译:暂无翻译