Currently, great numbers of efforts have been put into improving the effectiveness of 3D model quality assessment (3DQA) methods. However, little attention has been paid to the computational costs and inference time, which is also important for practical applications. Unlike 2D media, 3D models are represented by more complicated and irregular digital formats, such as point cloud and mesh. Thus it is normally difficult to perform an efficient module to extract quality-aware features of 3D models. In this paper, we address this problem from the aspect of projection-based 3DQA and develop a no-reference (NR) \underline{E}fficient and \underline{E}ffective \underline{P}rojection-based \underline{3D} Model \underline{Q}uality \underline{A}ssessment (\textbf{EEP-3DQA}) method. The input projection images of EEP-3DQA are randomly sampled from the six perpendicular viewpoints of the 3D model and are further spatially downsampled by the grid-mini patch sampling strategy. Further, the lightweight Swin-Transformer tiny is utilized as the backbone to extract the quality-aware features. Finally, the proposed EEP-3DQA and EEP-3DQA-t (tiny version) achieve the best performance than the existing state-of-the-art NR-3DQA methods and even outperforms most full-reference (FR) 3DQA methods on the point cloud and mesh quality assessment databases while consuming less inference time than the compared 3DQA methods.


翻译:目前,为提高3D模型质量评估(3DQA)方法的有效性,已经付出了大量努力,但很少注意计算成本和计算时间,这对于实际应用也很重要。与2D媒体不同,3D模型代表的是更复杂和不规则的数字格式,如点云和网目。因此通常很难执行高效模块以提取3D模型的质量认知特征。在本文中,我们从基于投影的3D质量评估(3DQA)方面解决这一问题,并开发一个不参照(NR)线下(E)点和下线({E}偏差和下线{E}下线{下线{P}偏差{线下线{3D}3D模型代表的是更复杂和不规则的数字格式。在3D模型中,3D模型的输入预测图像是随机抽样的,在3D模型的6个垂直视图中,甚至进一步从空间上下标为QQQ-3Q-3Q-3Q-D标准下标,而S-D最短的S-D级质量评估方法最终在S-S-Creal-S-S-Sy-Syal-reval-ral-ral-ral-ral-ral-ral-ral-serg-al-Stral-Sl-st-Sl-Sl-Strag-Sl-sxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx全面战略中,最终在Sl-Sl-Sl-Sl-Sl-Sl-Sl-Sl-Sl-Sl-S-S-S-Sl-S-S-S-S-Sl-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-Sl-Sl-Sl-Sl-Sl-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-Sl-S-S-S-S-S-Sl-S-S-S-S

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
123+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
13+阅读 · 2022年10月27日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
123+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员