We present LP-based approximation algorithms for the capacitated facility location problem (CFL), a long-standing problem with intriguing unsettled approximability in the literature dated back to the 90s. We present an elegant iterative rounding scheme for the MFN relaxation that yields an approximation guarantee of $\left(10+\sqrt{67}\right)/2 \approx 9.0927$, a significant improvement upon the previous LP-based ratio of $288$ due to An et al. in~2014. For CFL with cardinality facility cost (CFL-CFC), we present an LP-based $4$-approximation algorithm, which not only surpasses the long-standing ratio of~$5$ due to Levi et al. that ages up for decades since 2004 but also unties the long-time match to the best approximation for CFL that is obtained via local search in 2012. Our result considerably deepens the current understanding for the CFL problem and indicates that an LP-based ratio strictly better than $5$ in polynomial time for the general problem may still be possible to pursue.
翻译:我们提出了基于LP的功能化设施定位问题近似算法(CFL),这是一个长期存在的令人感兴趣的问题,在文献中可以追溯到90年代。我们提出了一个优雅的最惠国宽减迭接合法,可以提供美元左转(10 ⁇ sqrt{67 ⁇ right)/2\ approx 9.0927$的近似算法,这大大改进了安等人在2014年的先前基于LP的288美元比率。对于具有主要设施成本的CFL(CFL-CFC),我们提出了一个基于LP的4美元近似合算法,它不仅超过了2004年以来由于莱维等人而导致的长期比率(~5美元),而且比2012年通过本地搜索获得的CFLFL的最佳近似率要长一些。我们的结果大大加深了目前对CFLL问题的了解,并表明,在一般问题中,基于LP的比例可能仍然完全好于5美元。