In this paper, we consider the Minimum-Load $k$-Clustering/Facility Location (MLkC) problem where we are given a set $P$ of $n$ points in a metric space that we have to cluster and an integer $k$ that denotes the number of clusters. Additionally, we are given a set $F$ of cluster centers in the same metric space. The goal is to select a set $C\subseteq F$ of $k$ centers and assign each point in $P$ to a center in $C$, such that the maximum load over all centers is minimized. Here the load of a center is the sum of the distances between it and the points assigned to it. Although clustering/facility location problems have a rich literature, the minimum-load objective is not studied substantially, and hence MLkC has remained a poorly understood problem. More interestingly, the problem is notoriously hard even in some special cases including the one in line metrics as shown by Ahmadian et al. [ACM Trans. Algo. 2018]. They also show APX-hardness of the problem in the plane. On the other hand, the best-known approximation factor for MLkC is $O(k)$, even in the plane. In this work, we study a fair version of MLkC inspired by the work of Chierichetti et al. [NeurIPS, 2017], which generalizes MLkC. Here the input points are colored by one of the $\ell$ colors denoting the group they belong to. MLkC is the special case with $\ell=1$. Considering this problem, we are able to obtain a $3$-approximation in $f(k,\ell)\cdot n^{O(1)}$ time. Also, our scheme leads to an improved $(1 + \epsilon)$-approximation in case of Euclidean norm, and in this case, the running time depends only polynomially on the dimension $d$. Our results imply the same approximations for MLkC with running time $f(k)\cdot n^{O(1)}$, achieving the first constant approximations for this problem in general and Euclidean metric spaces.
翻译:在本文中,我们考虑的是最低成本(nak) $(k) 美元(c) 美元(美元) / 通度(MLkC) 问题,在这个问题上,我们得到一个固定的美元(美元) 美元(美元), 在一个我们必须分组的计量空间里,一个整数(美元) 美元(美元), 表示集群的数量(美元), 表示集群的数量(美元) 。 此外, 我们的目标是选择一个固定的 美元(美元), 以美元(美元) 将每个点(美元) 分配给一个中心, 以美元(美元) 表示所有中心的最大负荷是最小的。在这里, 中心的数量(美元) 是它与指定点之间的距离总和。 虽然组合/ 美元(美元) 最小值(lk) 目标(美元) 仍然是一个问题。 更有意思的是, 问题在一些特殊的例子中, 以美元(美元(美元) 以美元(美元(美元) 美元(美元) 表示我们最常数(l) 工作(l) 以美元(l) 时间(l) 以美元) 问题来, 以美元(l) 工作(l) 以美元(l) 以美元) 以美元(l) 以美元(l) 工作(l) 以美元) 以美元(l) 问题来计算) 。