Deep learning methods have enabled task-oriented semantic parsing of increasingly complex utterances. However, a single model is still typically trained and deployed for each task separately, requiring labeled training data for each, which makes it challenging to support new tasks, even within a single business vertical (e.g., food-ordering or travel booking). In this paper we describe Cross-TOP (Cross-Schema Task-Oriented Parsing), a zero-shot method for complex semantic parsing in a given vertical. By leveraging the fact that user requests from the same vertical share lexical and semantic similarities, a single cross-schema parser is trained to service an arbitrary number of tasks, seen or unseen, within a vertical. We show that Cross-TOP can achieve high accuracy on a previously unseen task without requiring any additional training data, thereby providing a scalable way to bootstrap semantic parsers for new tasks. As part of this work we release the FoodOrdering dataset, a task-oriented parsing dataset in the food-ordering vertical, with utterances and annotations derived from five schemas, each from a different restaurant menu.
翻译:深层学习方法使得任务导向的语义解析能够对日益复杂的语义进行日益复杂的语义解析。 但是,单一模式通常仍然被培训,并且为每项任务分别部署,需要贴标签的培训数据,这就使得支持新任务变得很困难,即使在单一的商业垂直范围内(如食品订单或旅行预订等)也是如此。 在本文中,我们描述了跨 TOP (Cross-Schema Tlection-Orented Passing) (Cross-Schema Tlection-Orented Passing), 这是在给定的垂直语义中进行复杂语义解解解解的零弹式方法 。 通过利用用户从相同的垂直共享词义和语义相似性求取的数据, 单个跨系统分析器经过培训, 可以在垂直范围内为任意数量的任务提供服务, 显示或看不到的任务。 我们表明, 跨 TOP 可以实现先前所看不见的任务的高度精确性, 而不需要任何额外的培训数据, 从而提供一种可缩略的方法, 用于新任务。 作为这项工作的一部分, 我们释放了FoodOderderderderation数据集, 和图解取了从不同的5 。