Because of transportation planning, traffic management and dispatch optimization importance, the passenger origin-destination prediction has become one of the most important requirements for intelligent transportation systems management. In this paper, we propose a model to predict the origin and destination of travels which will occur in the next specified time window. In order to extract meaningful travel flows we use K-means clustering in four-dimensional space with maximum cluster size limitation for origin and destination. Because of large number of clusters, we use non-negative matrix factorization to decrease the number of travel clusters. We also use a stacked recurrent neural network model to predict travels count in each cluster. Comparing our results with other existing models show that our proposed model has 5-7% lower mean absolute percentage error (MAPE) for 1-hour time window, and 14% lower MAPE for 30-minute time window.
翻译:由于运输规划、交通管理和调度的优化重要性,旅客来源目的地预测已成为智能运输系统管理的最重要要求之一。在本文中,我们提出了一个模型来预测下一个指定时间窗口中将发生的旅行的起源和目的地。为了吸引有意义的旅行流动,我们用K手段在四维空间进行分组,对来源和目的地的集束规模限制最大。由于组群数量众多,我们使用非负矩阵化来减少旅行群集的数量。我们还使用堆叠的经常性神经网络模型来预测每个组群中的旅行次数。比较我们与其他现有模型的结果表明,我们提议的模型在1小时窗口中存在5-7%的绝对误差率(MAPE),在30分钟窗口中使用14%的低速MAPE。