Predicting image memorability has attracted interest in various fields. Consequently, prediction accuracy with convolutional neural network (CNN) models has been approaching the empirical upper bound estimated based on human consistency. However, identifying which feature representations embedded in CNN models are responsible for such high prediction accuracy of memorability remains an open question. To tackle this problem, this study sought to identify memorability-related feature representations in CNN models using brain similarity. Specifically, memorability prediction accuracy and brain similarity were examined and assessed by Brain-Score across 16,860 layers in 64 CNN models pretrained for object recognition. A clear tendency was shown in this comprehensive analysis that layers with high memorability prediction accuracy had higher brain similarity with the inferior temporal (IT) cortex, which is the highest stage in the ventral visual pathway. Furthermore, fine-tuning the 64 CNN models revealed that brain similarity with the IT cortex at the penultimate layer was positively correlated with memorability prediction accuracy. This analysis also showed that the best fine-tuned model provided accuracy comparable to the state-of-the-art CNN models developed specifically for memorability prediction. Overall, this study's results indicated that the CNN models' great success in predicting memorability relies on feature representation acquisition similar to the IT cortex. This study advanced our understanding of feature representations and its use for predicting image memorability.


翻译:预测神经神经网络(CNN)模型的精确度已经接近根据人类一致性所作的实验性最高限值估计。然而,确定CNN模型中所含的哪些特征显示对记忆性预测准确性如此高,仍然是一个尚未解决的问题。为了解决这一问题,这项研究试图确定CNN模型中使用大脑相似性与记忆性有关的特征表现。具体地说,在64个CNN模型中,模拟性预测准确性和大脑相似性由16,860层的大脑-智能神经网络(CNN)模型中,64个CNN模型中,860层的记忆性预测精确度已经预先为物体识别进行了培训。这一全面分析表明一种明显的趋势,即具有高记忆性预测准确性的各个层的大脑与较低时间(IT)皮层皮层的大脑相似性,这是心血管视觉路径中最高的阶段。此外,对64个CNN模型的大脑与上层信息技术皮层的大脑相似性表示,与记忆性预测性准确性准确性反应。这一分析还表明,最精确的模型提供了与州-状态-或高级CNNCNCAR模型的精确性预测性,具体地显示,其模型的可测得性预测性预测性模型为M的模型的精确性。</s>

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
39+阅读 · 2020年9月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员