Epilepsy is a chronic neurological disorder affecting more than 50 million people globally. An epileptic seizure acts like a temporary shock to the neuronal system, disrupting normal electrical activity in the brain. Epilepsy is frequently diagnosed with electroencephalograms (EEGs). Current methods study the time-varying spectra and coherence but do not directly model changes in extreme behavior. Thus, we propose a new approach to characterize brain connectivity based on the joint tail behavior of the EEGs. Our proposed method, the conditional extremal dependence for brain connectivity (Conex-Connect), is a pioneering approach that links the association between extreme values of higher oscillations at a reference channel with the other brain network channels. Using the Conex-Connect method, we discover changes in the extremal dependence driven by the activity at the foci of the epileptic seizure. Our model-based approach reveals that, pre-seizure, the dependence is notably stable for all channels when conditioning on extreme values of the focal seizure area. Post-seizure, by contrast, the dependence between channels is weaker, and dependence patterns are more "chaotic". Moreover, in terms of spectral decomposition, we find that high values of the high-frequency Gamma-band are the most relevant features to explain the conditional extremal dependence of brain connectivity.


翻译:癫痫发作是一种慢性神经疾病,影响全球超过5 000万人。癫痫发作行为,如神经系统暂时休克,扰乱大脑正常的电动活动。癫痫发作经常被电脑图诊断。目前的方法研究时间变化的光谱和一致性,但并不直接模拟极端行为的变化。因此,我们提议一种新的方法,根据EEEG的共同尾巴行为来描述大脑连接特征。我们建议的方法,即对大脑连接的有条件极端依赖(Conex- Connect),是一种开拓性的方法,将一个参考频道上较高振动的极端价值与其他脑网络频道的联系联系起来。我们使用Conex-Connect方法,发现由癫痫发作活动驱动的极端依赖性的变化。我们基于模型的方法显示,在调整焦点缉获地区的极端价值时,对所有渠道的依赖性都非常稳定。后,对比之下,一个参考频道上较高振动的振动值与其他大脑网络频道之间的依赖性是较弱的,而对G-commelim 的高度依赖性模式则更能解释我们“高分辨率的对高分辨率的稳定性的稳定性” 。

0
下载
关闭预览

相关内容

Notability 是一款功能强大的备注记录软件,可用于注释文稿、草拟想法、录制演讲、记录备注等。它将键入、手写、录音和照片结合在一起,便于您根据需要创建相应的备注。在 iCloud 的支持下,您的备注在 iPad、iPhone 和 Mac 上将始终可用。晨昏相伴,如影随行。
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月6日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员