Epilepsy is a chronic neurological disorder affecting more than 50 million people globally. An epileptic seizure acts like a temporary shock to the neuronal system, disrupting normal electrical activity in the brain. Epilepsy is frequently diagnosed with electroencephalograms (EEGs). Current methods study the time-varying spectra and coherence but do not directly model changes in extreme behavior. Thus, we propose a new approach to characterize brain connectivity based on the joint tail behavior of the EEGs. Our proposed method, the conditional extremal dependence for brain connectivity (Conex-Connect), is a pioneering approach that links the association between extreme values of higher oscillations at a reference channel with the other brain network channels. Using the Conex-Connect method, we discover changes in the extremal dependence driven by the activity at the foci of the epileptic seizure. Our model-based approach reveals that, pre-seizure, the dependence is notably stable for all channels when conditioning on extreme values of the focal seizure area. Post-seizure, by contrast, the dependence between channels is weaker, and dependence patterns are more "chaotic". Moreover, in terms of spectral decomposition, we find that high values of the high-frequency Gamma-band are the most relevant features to explain the conditional extremal dependence of brain connectivity.
翻译:癫痫发作是一种慢性神经疾病,影响全球超过5 000万人。癫痫发作行为,如神经系统暂时休克,扰乱大脑正常的电动活动。癫痫发作经常被电脑图诊断。目前的方法研究时间变化的光谱和一致性,但并不直接模拟极端行为的变化。因此,我们提议一种新的方法,根据EEEG的共同尾巴行为来描述大脑连接特征。我们建议的方法,即对大脑连接的有条件极端依赖(Conex- Connect),是一种开拓性的方法,将一个参考频道上较高振动的极端价值与其他脑网络频道的联系联系起来。我们使用Conex-Connect方法,发现由癫痫发作活动驱动的极端依赖性的变化。我们基于模型的方法显示,在调整焦点缉获地区的极端价值时,对所有渠道的依赖性都非常稳定。后,对比之下,一个参考频道上较高振动的振动值与其他大脑网络频道之间的依赖性是较弱的,而对G-commelim 的高度依赖性模式则更能解释我们“高分辨率的对高分辨率的稳定性的稳定性” 。