Sense of hearing is crucial for autonomous vehicles (AVs) to better perceive its surrounding environment. Although visual sensors of an AV, such as camera, lidar, and radar, help to see its surrounding environment, an AV cannot see beyond those sensors line of sight. On the other hand, an AV s sense of hearing cannot be obstructed by line of sight. For example, an AV can identify an emergency vehicle s siren through audio classification even though the emergency vehicle is not within the line of sight of the AV. Thus, auditory perception is complementary to the camera, lidar, and radar-based perception systems. This paper presents a deep learning-based robust audio classification framework aiming to achieve improved environmental perception for AVs. The presented framework leverages a deep Convolution Neural Network (CNN) to classify different audio classes. UrbanSound8k, an urban environment dataset, is used to train and test the developed framework. Seven audio classes i.e., air conditioner, car horn, children playing, dog bark, engine idling, gunshot, and siren, are identified from the UrbanSound8k dataset because of their relevancy related to AVs. Our framework can classify different audio classes with 97.82% accuracy. Moreover, the audio classification accuracies with all ten classes are presented, which proves that our framework performed better in the case of AV-related sounds compared to the existing audio classification frameworks.


翻译:听觉感知是自治车辆更好地了解周围环境的关键。虽然AV的视觉传感器,如相机、利达尔和雷达,有助于观察周围环境,但AV无法超越这些传感器的视线。另一方面,AV的听觉感知不能因视线而受阻。例如,AV即使紧急车辆不在AV的视线范围内,也可以通过音频分类确定紧急车辆的警报。因此,听觉感知是对照相机、利达尔和雷达感知系统的辅助。本文展示了一个深层次的基于学习的稳健音频分类框架,目的是改善AV的环境感知。 所介绍的框架利用了深度进化神经网络(CNN)来对不同的音频类别进行分类。 城市Sound8k是一个城市环境数据集,用于培训和测试已开发的框架。 7个音频类,即空调、汽车喇叭、儿童游戏、狗皮、发动机、枪声和红心机等,从城市音频828的音频分类框架中找出一个深的基于学习的稳健的音频8K分类框架,因为我们现有的音频822的分类框架与所有音频分类都有。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月19日
Arxiv
12+阅读 · 2021年6月21日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关VIP内容
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员