Semantic segmentation of 3D medical images is a challenging task due to the high variability of the shape and pattern of objects (such as organs or tumors). Given the recent success of deep learning in medical image segmentation, Neural Architecture Search (NAS) has been introduced to find high-performance 3D segmentation network architectures. However, because of the massive computational requirements of 3D data and the discrete optimization nature of architecture search, previous NAS methods require a long search time or necessary continuous relaxation, and commonly lead to sub-optimal network architectures. While one-shot NAS can potentially address these disadvantages, its application in the segmentation domain has not been well studied in the expansive multi-scale multi-path search space. To enable one-shot NAS for medical image segmentation, our method, named HyperSegNAS, introduces a HyperNet to assist super-net training by incorporating architecture topology information. Such a HyperNet can be removed once the super-net is trained and introduces no overhead during architecture search. We show that HyperSegNAS yields better performing and more intuitive architectures compared to the previous state-of-the-art (SOTA) segmentation networks; furthermore, it can quickly and accurately find good architecture candidates under different computing constraints. Our method is evaluated on public datasets from the Medical Segmentation Decathlon (MSD) challenge, and achieves SOTA performances.


翻译:3D 医学图像的解析系因物体(如器官或肿瘤)的形状和形态变化很大,因此,3D 医学图像的解析是一个艰巨的任务。鉴于最近在医学图像分割方面的深层学习取得成功,引入了神经结构搜索(NAS)以寻找高性能 3D 分解网络结构。然而,由于3D 数据的大量计算要求和建筑搜索的离散优化性质,先前的NAS 方法需要很长的搜索时间或必要的持续放松,通常导致亚最佳网络结构。一发NAS 可能解决这些缺点,但在分割域的应用方面却没有得到深入的多尺度多方向搜索空间的研究。为了让一发NAS 能够找到高性能的 3D 分解网络(NAS NA ), 我们的方法, 名为 SuperSeSegyS, 用于协助进行超级网络培训或必要的持续放松, 并且通常导致在建筑搜索中引入非最佳网络结构结构结构。我们显示, 超SyperSegeNAS 将产生更好的表现, 更多的直视结构, 和在前SOTA 中进行精确的系统分析。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年8月4日
专知会员服务
27+阅读 · 2021年8月2日
专知会员服务
60+阅读 · 2020年3月19日
CVPR 2020 论文大盘点-光流篇
计算机视觉life
9+阅读 · 2020年7月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
8+阅读 · 2021年1月28日
Arxiv
8+阅读 · 2020年6月15日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
专知会员服务
16+阅读 · 2021年8月4日
专知会员服务
27+阅读 · 2021年8月2日
专知会员服务
60+阅读 · 2020年3月19日
相关资讯
CVPR 2020 论文大盘点-光流篇
计算机视觉life
9+阅读 · 2020年7月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员