Transcranial magnetic stimulation co-registered with electroencephalographic (TMS-EEG) has previously proven a helpful tool in the study of Alzheimer's disease (AD). In this work, we investigate the use of TMS-evoked EEG responses to classify AD patients from healthy controls (HC). By using a dataset containing 17AD and 17HC, we extract various time domain features from individual TMS responses and average them over a low, medium and high density EEG electrode set. Within a leave-one-subject-out validation scenario, the best classification performance for AD vs. HC was obtained using a high-density electrode with a Random Forest classifier. The accuracy, sensitivity and specificity were of 92.7%, 96.58% and 88.2% respectively.
翻译:与脑电图(TMS-EEG)共同注册的转基因磁刺激在过去证明是研究阿尔茨海默氏病(AD)的一个有用工具。在这项工作中,我们调查了TMS-evoked EEG对AD病人进行健康控制(HC)的分类反应的使用情况。我们使用包含17AD和17HC的数据集,从个人TMS反应中提取了各种时间域特征,平均在低密度、中密度和高密度EEEG电台中进行。在允许一次性试验的情况下,使用随机森林分类器的高密度电极取得了AD对HC的最佳分类性能。精确度、灵敏度和特性分别达到92.7%、96.58%和88.2%。