When we use the wisdom of the crowds, we usually rank the answers according to their popularity, especially when we cannot verify the answers. However, this can be very dangerous when the majority make systematic mistakes. A fundamental question arises: can we build a hierarchy among the answers \textit{without any prior} where the higher-ranking answers, which may not be supported by the majority, are from more sophisticated people? To address the question, we propose 1) a novel model to describe people's thinking hierarchy; 2) two algorithms to learn the thinking hierarchy without any prior; 3) a novel open-response based crowdsourcing approach based on the above theoretic framework. In addition to theoretic justifications, we conduct four empirical crowdsourcing studies and show that a) the accuracy of the top-ranking answers learned by our approach is much higher than that of plurality voting (In one question, the plurality answer is supported by 74 respondents but the correct answer is only supported by 3 respondents. Our approach ranks the correct answer the highest without any prior); b) our model has a high goodness-of-fit, especially for the questions where our top-ranking answer is correct. To the best of our knowledge, we are the first to propose a thinking hierarchy model with empirical validations in the general problem-solving scenarios; and the first to propose a practical open-response based crowdsourcing approach that beats plurality voting without any prior.
翻译:当我们使用人群的智慧时,我们通常根据人群的流行程度来排列答案,特别是当我们无法核实答案时。然而,当多数人作出系统性错误时,这可能非常危险。一个根本性的问题产生:我们能否在答案\textit{不事先任何事 中建立等级分级,因为高层次的答案可能得不到多数人的支持,而来自更先进的人?为了解决问题,我们提议1)一个描述人们思维等级的新模式;2)不用事先就学习思维等级的两种算法;3)基于上述理论框架的基于思维等级的新颖的开放反应的众包办法;3)基于上述理论框架的新颖的开放反应的众包办法。除了理论性理由外,我们还进行四项经验性的众包研究,并表明:(a)我们的方法所学到的最高级答案的准确性远远高于多元性投票的准确性(在一个问题中,多元性答案得到74个答复者的支持,而正确的答案只得到3个答复者的支持。我们的方法将正确的答案排在不事先的顺序上排在最高一级;(b)我们的模式有一个高度的精准,特别是对于我们顶级答复的问题,我们的顶尖的答案是我们的顶级的答案。除了理论性答案是正确的。我们的第一,我们的头级的答案是没有节制的答案。我们先提出一个基础的层次的层次的层次的层次的层次的层次的层次的层次的层次的层次的层次的推的推论,一个基础的推的推的推的推的推的推的推的推的推的推论的推。在先的推的推的推的推的推的推论,一个最深的推的推的推的推的推的推的推的推。