We prove the support recovery for a general class of linear and nonlinear evolutionary partial differential equation (PDE) identification from a single noisy trajectory using $\ell_1$ regularized Pseudo-Least Squares model~($\ell_1$-PsLS). In any associative $\mathbb{R}$-algebra generated by finitely many differentiation operators that contain the unknown PDE operator, applying $\ell_1$-PsLS to a given data set yields a family of candidate models with coefficients $\mathbf{c}(\lambda)$ parameterized by the regularization weight $\lambda\geq 0$. The trace of $\{\mathbf{c}(\lambda)\}_{\lambda\geq 0}$ suffers from high variance due to data noises and finite difference approximation errors. We provide a set of sufficient conditions which guarantee that, from a single trajectory data denoised by a Local-Polynomial filter, the support of $\mathbf{c}(\lambda)$ asymptotically converges to the true signed-support associated with the underlying PDE for sufficiently many data and a certain range of $\lambda$. We also show various numerical experiments to validate our theory.
翻译:在包含未知的 PDE 操作员的有限差异操作器中, 我们证明支持从单一噪音轨迹中回收一般类别的线性和非线性进化部分偏差方程( PDE), 使用 $\ ell_ 1$ 美元 常规化的 Pseudo- Least 广场模型~ ($\ ell_ 1$- PsLS) 。 在包含未知的 PDE 操作员的有限差异操作器生成的任何关联 $mathb{R) 和 非线性进化部分偏差方方方程模型中, 我们用 $\ mathbf{c} (\ lambda) 的参数从单个的候选模型中产生一系列参数 。 $\ lambda\ ge+q 0} 的痕迹因数据噪音和有限差差差差差差差差而存在很大差异。 我们提供了一套充分的条件, 保证从一个由本地- Polynomimal 过滤器解析的单一轨道数据, 支持 $\ mathb{c} (lumbda$\\\\\ alamda$