In this article we describe a new Hermite series based sequential estimator for the Spearman rank correlation coefficient and provide algorithms applicable in both the stationary and non-stationary settings. To treat the non-stationary setting, we introduce a novel, exponentially weighted estimator for the Spearman rank correlation, which allows the local nonparametric correlation of a bivariate data stream to be tracked. To the best of our knowledge this is the first algorithm to be proposed for estimating a time varying Spearman rank correlation that does not rely on a moving window approach. We explore the practical effectiveness of the Hermite series based estimators through real data and simulation studies demonstrating good practical performance. The simulation studies in particular reveal competitive performance compared to an existing algorithm. The potential applications of this work are manifold. The Hermite series based Spearman rank correlation estimator can be applied to fast and robust online calculation of correlation which may vary over time. Possible machine learning applications include, amongst others, fast feature selection and hierarchical clustering on massive data sets.


翻译:在此篇文章中, 我们描述一个新的赫尔米特序列, 以Spearman 级相关系数的顺序测算器为基础, 并提供适用于固定和非静止环境的算法。 为了处理非静止环境, 我们为Spearman 级相关比率引入了一个新颖的、 指数加权测算器, 允许跟踪双变量数据流的本地非参数性相关性。 据我们所知, 这是第一个用于估算不依赖移动窗口方法的不同时期Spearman 级相关性的算法。 我们通过真实的数据和模拟研究探索基于Hermite 级的测算器的实际有效性, 以显示良好的实用性能。 模拟研究特别揭示了与现有算法相比的竞争性性能。 这项工作的潜在应用是多重的。 基于 Spearman 级相关测量器的Hermite 系列可用于快速和稳健的在线相关关系计算, 随着时间的推移可能不同。 机器学习应用的方法包括快速特征选择和大规模数据集的分级组合等。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
4+阅读 · 2018年3月14日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员