Knowledge tracing allows Intelligent Tutoring Systems to infer which topics or skills a student has mastered, thus adjusting curriculum accordingly. Deep Learning based models like Deep Knowledge Tracing (DKT) and Dynamic Key-Value Memory Network (DKVMN) have achieved significant improvements compared with models like Bayesian Knowledge Tracing (BKT) and Performance Factors Analysis (PFA). However, these deep learning based models are not as interpretable as other models because the decision-making process learned by deep neural networks is not wholly understood by the research community. In previous work, we critically examined the DKT model, visualizing and analyzing the behaviors of DKT in high dimensional space. In this work, we extend our original analyses with a much larger dataset and add discussions about the memory states of the DKVMN model. We discover that Deep Knowledge Tracing has some critical pitfalls: 1) instead of tracking each skill through time, DKT is more likely to learn an `ability' model; 2) the recurrent nature of DKT reinforces irrelevant information that it uses during the tracking task; 3) an untrained recurrent network can achieve similar results to a trained DKT model, supporting a conclusion that recurrence relations are not properly learned and, instead, improvements are simply a benefit of projection into a high dimensional, sparse vector space. Based on these observations, we propose improvements and future directions for conducting knowledge tracing research using deep neural network models.


翻译:与Bayesian知识追踪(BKT)和绩效因素分析(PFA)等模型相比,这些深层次的学习基础模型与其它模型相比取得了显著的改进。 然而,这些深层次的学习基础模型不像其他模型那样可以解释,因为深层神经网络所学的决策过程并非为研究界所完全理解的。在以往的工作中,我们严格地审查了DKT模型,对DKT在高空间的行为进行了视觉化和分析。在这项工作中,我们用一个大得多的数据集扩展了我们最初的分析,并增加了关于DKVMN模型记忆状态的讨论。我们发现,深层知识追踪有一些关键的缺陷:(1) 而不是通过时间跟踪每一种技能,DKT更有可能学习“可操作性”模型;(2) DKT的经常性性质加强了其在跟踪任务中使用的不相干的信息;(3) 支持不训练有素的经常性网络的改进,而不是用一个经过培训的DKMMM的更新的模型,能够正确地在高层次上进行空间跟踪。

0
下载
关闭预览

相关内容

深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Interpretable Adversarial Training for Text
Arxiv
5+阅读 · 2019年5月30日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Interpretable Adversarial Training for Text
Arxiv
5+阅读 · 2019年5月30日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
16+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员