Vector space models for symbolic processing that encode symbols by random vectors have been proposed in cognitive science and connectionist communities under the names Vector Symbolic Architecture (VSA), and, synonymously, Hyperdimensional (HD) computing. In this paper, we generalize VSAs to function spaces by mapping continuous-valued data into a vector space such that the inner product between the representations of any two data points represents a similarity kernel. By analogy to VSA, we call this new function encoding and computing framework Vector Function Architecture (VFA). In VFAs, vectors can represent individual data points as well as elements of a function space (a reproducing kernel Hilbert space). The algebraic vector operations, inherited from VSA, correspond to well-defined operations in function space. Furthermore, we study a previously proposed method for encoding continuous data, fractional power encoding (FPE), which uses exponentiation of a random base vector to produce randomized representations of data points and fulfills the kernel properties for inducing a VFA. We show that the distribution from which elements of the base vector are sampled determines the shape of the FPE kernel, which in turn induces a VFA for computing with band-limited functions. In particular, VFAs provide an algebraic framework for implementing large-scale kernel machines with random features, extending Rahimi and Recht, 2007. Finally, we demonstrate several applications of VFA models to problems in image recognition, density estimation and nonlinear regression. Our analyses and results suggest that VFAs constitute a powerful new framework for representing and manipulating functions in distributed neural systems, with myriad applications in artificial intelligence.


翻译:用于象征性处理的矢量空间模型,在认知科学和联系学社区中,以矢量符号编码随机矢量符号,在矢量符号结构(VSA)的名称下,提出了以随机矢量符号编码符号的矢量空间模型。在本文中,我们通过将连续价值数据映射成矢量空间,将VSA推广到功能空间的功能空间,这样在两个数据点的表示中方之间的内部产品代表着一个相似的内核内核内核内核内核。通过比照VSA,我们称之为这个新的函数编码和计算框架矢量矢量功能结构(VFA)。在VFAs中,矢量矢量矢量可代表单个数据点以及功能空间的元素(再生内内核)以及功能空间的元素(再生硬度) 。在VPE中,从负载的正数矢量矢量矢量矢量矢量矢量矢量操作,在 VPE 机中,我们显示基础矢量的分布要素框架,在 VPE- 的内, 向导量量机中, 显示一个矢量机的矢量机中, 显示一个矢量机的矢量模型的输出分析。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Generating Table Vector Representations
Arxiv
0+阅读 · 2021年10月28日
Arxiv
1+阅读 · 2021年10月27日
GeomCA: Geometric Evaluation of Data Representations
Arxiv
11+阅读 · 2021年5月26日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员