The degree of semantic relatedness (or, closeness in meaning) of two units of language has long been considered fundamental to understanding meaning. Automatically determining relatedness has many applications such as question answering and summarization. However, prior NLP work has largely focused on semantic similarity (a subset of relatedness), because of a lack of relatedness datasets. Here for the first time, we introduce a dataset of semantic relatedness for sentence pairs. This dataset, STR-2021, has 5,500 English sentence pairs manually annotated for semantic relatedness using a comparative annotation framework. We show that the resulting scores have high reliability (repeat annotation correlation of 0.84). We use the dataset to explore a number of questions on what makes two sentences more semantically related. We also evaluate a suite of sentence representation methods on their ability to place pairs that are more related closer to each other in vector space.


翻译:两个语言单位的语义关联程度(或含义上的近距离)长期以来一直被认为是理解含义的根本。自动确定关联性有许多应用,例如问答和概括性。然而,先前的国家语言规划工作主要侧重于语义相似性(关联性子集),因为缺乏关联性数据集。这里我们第一次为判刑配对引入了语义关联性数据集。这个数据集(STS-2021)有5,500对英语句子,用比较注解框架人工附加语义关联性说明。我们表明,由此产生的评分具有很高的可靠性(0.84的复述注相关性)。我们使用数据集来探索如何使两句语系关系更加密切的若干问题。我们还评估了一套关于它们能否在矢量空间放置更相近的配对的句式代表方法。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
最新《深度持续学习》综述论文,32页pdf
专知会员服务
179+阅读 · 2020年9月7日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
6+阅读 · 2018年12月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Visualizing and Measuring the Geometry of BERT
Arxiv
7+阅读 · 2019年10月28日
Arxiv
7+阅读 · 2019年10月6日
VIP会员
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
6+阅读 · 2018年12月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员