Many neural-based recommender systems were proposed in recent years and part of them used Generative Adversarial Networks (GAN) to model user-item interactions. However, the exploration of Wasserstein GAN with Gradient Penalty (WGAN-GP) on recommendation has received relatively less scrutiny. In this paper, we focus on two questions: 1- Can we successfully apply WGAN-GP on recommendation and does this approach give an advantage compared to the best GAN models? 2- Are GAN-based recommender systems relevant? To answer the first question, we propose a recommender system based on WGAN-GP called CFWGAN-GP which is founded on a previous model (CFGAN). We successfully applied our method on real-world datasets on the top-k recommendation task and the empirical results show that it is competitive with state-of-the-art GAN approaches, but we found no evidence of significant advantage of using WGAN-GP instead of the original GAN, at least from the accuracy point of view. As for the second question, we conduct a simple experiment in which we show that a well-tuned conceptually simpler method outperforms GAN-based models by a considerable margin, questioning the use of such models.


翻译:近年来提出了许多以神经为基础的建议系统,其中部分系统使用General Adversarial Networks(GAN)来模拟用户-项目的互动。然而,根据建议对瓦塞尔斯坦GAN与梯度惩罚(WGAN-GP)的探索相对没有那么仔细。在本文件中,我们侧重于两个问题:1——我们能否成功应用WGAN-GP的建议,这一方法是否比最好的GAN模型具有优势?2-GAN基于GAN的建议系统具有相关性?为了回答第一个问题,我们提出了一个基于WGAN-GP的称为CFWGAN-GP的建议系统,这个系统是以以前的模型(CFGAN)为基础的。我们成功地将我们的方法应用于现实世界数据集的顶级建议任务和实证结果显示,它与最先进的GAN方法具有竞争力,但我们没有发现任何证据表明使用WGAN-GGGGP有重大优势,至少从精确的角度来看是如此。关于第二个问题,我们进行了简单的实验,我们用这种模型展示了一种非常简单的概念模型,我们用了一个非常简单的模型来示范。

0
下载
关闭预览

相关内容

GAN:生成性对抗网,深度学习模型的一种,在神经网络模型中引入竞争机制,非常流行。
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年6月10日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员