We introduce an imitation learning-based physical human-robot interaction algorithm capable of predicting appropriate robot responses in complex interactions involving a superposition of multiple interactions. Our proposed algorithm, Blending Bayesian Interaction Primitives (B-BIP) allows us to achieve responsive interactions in complex hugging scenarios, capable of reciprocating and adapting to a hugs motion and timing. We show that this algorithm is a generalization of prior work, for which the original formulation reduces to the particular case of a single interaction, and evaluate our method through both an extensive user study and empirical experiments. Our algorithm yields significantly better quantitative prediction error and more-favorable participant responses with respect to accuracy, responsiveness, and timing, when compared to existing state-of-the-art methods.
翻译:我们引入了一种模拟的基于学习的人体-机器人物理互动算法,能够预测在涉及多重互动叠加的复杂互动中适当的机器人反应。 我们提议的算法“Blending Bayesian Exactive Primitives (B-BIP) ” ( Blling Bayesian Inter Primitives (B-BIP ) ) 使我们能够在复杂的拥抱情景中实现反应性互动,能够对拥抱运动和时间进行回馈和适应。 我们表明,这种算法是对先前工作的概括化,而最初的表达方式可以减少为单一互动的特定情况,并通过广泛的用户研究和经验实验来评估我们的方法。 我们的算法在准确性、反应和时间方面,与现有最先进的方法相比,其数量预测错误和参与者反应都大大优异。