Clinical question answering (QA) aims to automatically answer questions from medical professionals based on clinical texts. Studies show that neural QA models trained on one corpus may not generalize well to new clinical texts from a different institute or a different patient group, where large-scale QA pairs are not readily available for model retraining. To address this challenge, we propose a simple yet effective framework, CliniQG4QA, which leverages question generation (QG) to synthesize QA pairs on new clinical contexts and boosts QA models without requiring manual annotations. In order to generate diverse types of questions that are essential for training QA models, we further introduce a seq2seq-based question phrase prediction (QPP) module that can be used together with most existing QG models to diversify the generation. Our comprehensive experiment results show that the QA corpus generated by our framework can improve QA models on the new contexts (up to 8% absolute gain in terms of Exact Match), and that the QPP module plays a crucial role in achieving the gain.
翻译:临床问题解答(QA)旨在根据临床文本自动回答医疗专业人员的问题。研究表明,在一物质上受过训练的神经质量评估模型可能无法全面推广到不同机构或不同患者群体的新临床文本,在这些机构中,大规模QA配对无法随时用于模式再培训。为了应对这一挑战,我们提议了一个简单而有效的框架,即CliniQG4QA,利用问题生成(QG),在新的临床环境中合成质量评估配对,促进质量评估模型,而无需人工说明。为了产生对培训质量评估模型至关重要的各类问题,我们进一步引入一个基于后继2等值的问题短语预测模块,可以与大多数现有的QG模型一起使用,使一代多样化。我们的全面实验结果表明,我们框架产生的质量评估组合可以改进新环境的质量保证模型(在Exact Match中达到8%的绝对收益),而QPP模块在实现收益方面发挥着关键作用。