We propose a fast and scalable optimization method to solve chance or probabilistic constrained optimization problems governed by partial differential equations (PDEs) with high-dimensional random parameters. To address the critical computational challenges of expensive PDE solution and high-dimensional uncertainty, we construct surrogates of the constraint function by Taylor approximation, which relies on efficient computation of the derivatives, low rank approximation of the Hessian, and a randomized algorithm for eigenvalue decomposition. To tackle the difficulty of the non-differentiability of the inequality chance constraint, we use a smooth approximation of the discontinuous indicator function involved in the chance constraint, and apply a penalty method to transform the inequality constrained optimization problem to an unconstrained one. Moreover, we design a gradient-based optimization scheme that gradually increases smoothing and penalty parameters to achieve convergence, for which we present an efficient computation of the gradient of the approximate cost functional by the Taylor approximation. Based on numerical experiments for a problem in optimal groundwater management, we demonstrate the accuracy of the Taylor approximation, its ability to greatly accelerate constraint evaluations, the convergence of the continuation optimization scheme, and the scalability of the proposed method in terms of the number of PDE solves with increasing random parameter dimension from one thousand to hundreds of thousands.


翻译:我们建议一种快速和可扩缩的优化优化方法,以解决由具有高度随机参数的局部差异方程(PDEs)管理的机会或概率限制优化问题。为了应对昂贵的PDE解决方案和高度不确定性的关键性计算挑战,我们提出一个快速和可扩缩的优化优化方法,以解决由具有高度随机参数的局部差异方程式(PDEs)管理的风险或概率性限制优化优化问题。为了应对昂贵的PDE解决方案和高度不确定性等关键计算挑战,我们设计了泰勒近似(Taylor)的制约功能制约功能的替代功能,它依赖于高效计算衍生物衍生物的衍生物的高效计算,黑森的低等级近似(Hessian的低等级近似),以及乙醇分解分解的随机算法。为了解决最佳地下水管理问题,我们用数字实验来证明泰勒的精确度,它能够大大加快对机会制约性评估,使持续优化计划趋于一致,并采用惩罚方法将受限制的不平等限制优化优化问题转变为不受限制的问题。此外,我们设计了一个基于百分度的偏差度优化计划,从PDDSS的频率提高到一个标准。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月13日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员