Models with dimension more than the available sample size are now commonly used in various applications. A sensible inference is possible using a lower-dimensional structure. In regression problems with a large number of predictors, the model is often assumed to be sparse, with only a few predictors active. Interdependence between a large number of variables is succinctly described by a graphical model, where variables are represented by nodes on a graph and an edge between two nodes is used to indicate their conditional dependence given other variables. Many procedures for making inferences in the high-dimensional setting, typically using penalty functions to induce sparsity in the solution obtained by minimizing a loss function, were developed. Bayesian methods have been proposed for such problems more recently, where the prior takes care of the sparsity structure. These methods have the natural ability to also automatically quantify the uncertainty of the inference through the posterior distribution. Theoretical studies of Bayesian procedures in high-dimension have been carried out recently. Questions that arise are, whether the posterior distribution contracts near the true value of the parameter at the minimax optimal rate, whether the correct lower-dimensional structure is discovered with high posterior probability, and whether a credible region has adequate frequentist coverage. In this paper, we review these properties of Bayesian and related methods for several high-dimensional models such as many normal means problem, linear regression, generalized linear models, Gaussian and non-Gaussian graphical models. Effective computational approaches are also discussed.


翻译:现在,在各种应用中,通常使用比现有抽样规模多得多的模型。 使用低维结构,可以作出合理的推论。 在大量预测器的回归问题中,模型通常被假定为稀疏,只有少数预测器活跃。 大量变量之间的相互依存以图形模型简单描述,其中变量在图形上的节点和两个节点之间的边缘代表了图表上的节点,根据其他变量,对高维环境中的有条件依赖性进行了理论研究。 在高维环境中进行推论的许多程序,通常使用惩罚功能诱发通过尽量减少损失功能获得的解决方案的偏移。在大量预测器的回归问题中,开发了典型的处罚功能。在较近于通过尽可能减少损失函数获得的参数的精确度问题上,巴伊西亚方法被建议了更近一些的方法,而先前的预测器则照顾了宽度结构。这些方法具有自然能力,也可以自动量化通过海平面分布的推断的不确定性。 近期对巴耶斯程序进行了理论研究,根据其他变量进行了很多的理论性研究。 出现的问题是, 后方位分配合同是否接近于最小型最佳比率的参数的真正值, 是否是高平面的直径直径分析, 是否是高平面结构结构结构结构结构结构,是否是高的。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
38+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
168+阅读 · 2020年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月7日
Arxiv
0+阅读 · 2021年3月7日
Arxiv
3+阅读 · 2018年1月10日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
38+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
168+阅读 · 2020年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员