Accurate user interest modeling is vital for recommendation scenarios. One of the effective solutions is the sequential recommendation that relies on click behaviors, but this is not elegant in the video feed recommendation where users are passive in receiving the streaming contents and return skip or no-skip behaviors instead of active click behavior. Here skip and no-skip behaviors can be treated as negative and positive feedback, respectively. Indeed, skip and no-skip are not simply positive or negative correlated, so it is challenging to capture the transition pattern of positive and negative feedback. To do so, FeedRec has exploited a shared vanilla Transformer and grouped each feedback into different Transformers. Indeed, such a task may be challenging for the vanilla Transformer because head interaction of multi-heads attention does not consider different types of feedback. In this paper, we propose Dual-interest Factorization-heads Attention for Sequential Recommendation (short for DFAR) consisting of feedback-aware encoding layer, dual-interest disentangling layer and prediction layer. In the feedback-aware encoding layer, we first suppose each head of multi-heads attention can capture specific feedback relations. Then we further propose factorization-heads attention which can mask specific head interaction and inject feedback information so as to factorize the relation between different types of feedback. Additionally, we propose a dual-interest disentangling layer to decouple positive and negative interests before performing disentanglement on their representations. Finally, we evolve the positive and negative interests by corresponding towers whose outputs are contrastive by BPR loss. Experiments on two real-world datasets show the superiority of our proposed method against state-of-the-art baselines. Further ablation study and visualization also sustain its effectiveness.


翻译:准确的用户兴趣建模对于建议情景至关重要。 有效的解决方案之一是依靠点击行为进行顺序建议, 但它在视频反馈建议中并不优雅, 用户在接收流内容时被动, 返回跳跳或不跳不跳行为, 而不是积极的点击行为。 这里跳过和不跳过行为可以分别被视为消极和积极的反馈。 事实上, 跳过和不跳过不是简单的正或负相关关系, 因此, 捕捉正和负反馈的过渡模式具有挑战性。 要做到这一点, FefRec 开发了一个共享的香草变换器, 并将每份反馈组合到不同的变换器中。 事实上, 这种任务对于香草变换器来说可能具有挑战性, 因为多头关注的首端互动并不考虑不同的反馈类型。 在此文件中, 我们提议双向的分级变异端变异变异性建议( DFAR ), 包括反馈- 调调层, 双向变异性变换层和预测层。 在反馈层中, 我们首先假设每个变换的多面的首端, 都会会显示具体的变现, 我们的排序, 以不同的变现方式显示具体的变现, 我们的双向的排序, 我们的排序, 显示具体的变现, 显示特定的变压的排序, 我们的排序的排序的排序, 将显示具体的变压式的变压的变现, 我们的排序, 显示的排序, 将显示特定的变式, 。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
专知会员服务
61+阅读 · 2020年3月19日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
精选两篇最新AutoML推荐系统综述
机器学习与推荐算法
5+阅读 · 2022年4月7日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2021年6月27日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
14+阅读 · 2018年4月18日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
精选两篇最新AutoML推荐系统综述
机器学习与推荐算法
5+阅读 · 2022年4月7日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
相关论文
Arxiv
15+阅读 · 2021年6月27日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
14+阅读 · 2018年4月18日
Arxiv
12+阅读 · 2018年1月28日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员