Understanding tables is an important aspect of natural language understanding. Existing models for table understanding require linearization of the table structure, where row or column order is encoded as an unwanted bias. Such spurious biases make the model vulnerable to row and column order perturbations. Additionally, prior work has not thoroughly modeled the table structures or table-text alignments, hindering the table-text understanding ability. In this work, we propose a robust and structurally aware table-text encoding architecture TableFormer, where tabular structural biases are incorporated completely through learnable attention biases. TableFormer is (1) strictly invariant to row and column orders, and, (2) could understand tables better due to its tabular inductive biases. Our evaluations showed that TableFormer outperforms strong baselines in all settings on SQA, WTQ and TabFact table reasoning datasets, and achieves state-of-the-art performance on SQA, especially when facing answer-invariant row and column order perturbations (6% improvement over the best baseline), because previous SOTA models' performance drops by 4% - 6% when facing such perturbations while TableFormer is not affected.
翻译:现有表格理解模型要求表格结构的线性化,将行或列顺序编码为不想要的偏差。这种虚假偏差使得模型容易受到行和列顺序干扰。此外,先前的工作没有彻底模拟表格结构或表格文本对齐,妨碍了表格文本理解能力。在这项工作中,我们提议了一个强有力和结构上了解的表格文本编码结构表格式,表格结构偏差通过可学习的注意偏差完全纳入其中。表格式(1) 严格地对行和列顺序进行变换,以及(2) 由于其表缩进偏差,可以更好地理解表格。我们的评价表明,表格格式在SQA、WTQ和TabFact表格的所有设置中,均超越了强的基线,从而阻碍了表格文本理解数据设置。在SQA上,我们提出了一种强的、结构上了解的表格文本编码结构结构架构表格式,其中表格式结构偏差通过可学习的注意偏差完全纳入。表格式结构偏差(比最佳基线改进了6%),因为以前的SOTA模型的性能性下降4%-6%,而面对这种偏差则没有影响表格。