State-of-the-art Transformer-based models, with gigantic parameters, are difficult to be accommodated on resource constrained embedded devices. Moreover, with the development of technology, more and more embedded devices are available to run a Transformer model. For a Transformer model with different constraints (tight or loose), it can be deployed onto devices with different computing power. However, in previous work, designers did not choose the best device among multiple devices. Instead, they just used an existing device to deploy model, which was not necessarily the best fit and may lead to underutilization of resources. To address the deployment challenge of Transformer and the problem to select the best device, we propose an algorithm & hardware closed-loop acceleration framework. Given a dataset, a model, latency constraint LC and accuracy constraint AC, our framework can provide a best device satisfying both constraints. In order to generate a compressed model with high sparsity ratio, we propose a novel pruning technique, hierarchical pruning (HP). We optimize the sparse matrix storage format for HP matrix to further reduce memory usage for FPGA implementation. We design a accelerator that takes advantage of HP to solve the problem of concurrent random access. Experiments on Transformer and TinyBert model show that our framework can find different devices for various LC and AC, covering from low-end devices to high-end devices. Our HP can achieve higher sparsity ratio and is more flexible than other sparsity pattern. Our framework can achieve 37x, 1.9x, 1.7x speedup compared to CPU, GPU and FPGA, respectively.


翻译:此外,随着技术的开发,越来越多的嵌入装置可用于运行一个变异器模型。对于具有不同限制(严格或松散)的变异器模型,可以将其安装在具有不同计算功率的变异器模型上。然而,在以往的工作中,设计者没有选择多种设备中的最佳装置。相反,他们只是使用一个现有的装置来部署模型,这不一定是最合适的,并可能导致资源利用不足。为了应对变异器的部署挑战和选择最佳装置的问题,我们建议使用一个变异器和硬件封闭式超lo加速框架。鉴于一个有不同限制(严格或松动)的变异器模型,它可以将其安装到具有不同计算功率的变异器模型。为了生成一个压缩式的模型,我们建议采用一种新颖的裁剪裁技术,等级的裁剪裁(HPH);我们优化了HP矩阵的稀释矩阵,以进一步减少FGA执行的记忆用量,我们提出了一种变异器和硬件闭路槽的加速框架。我们分别设计了一个模型、一个液压式的模型、一个升级框架,用来覆盖了我们Orcal-C的进入各种变压器。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
57+阅读 · 2021年6月1日
专知会员服务
25+阅读 · 2021年4月2日
Transformer模型-深度学习自然语言处理,17页ppt
专知会员服务
102+阅读 · 2020年8月30日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】基于TVM工具链的深度学习编译器 NNVM compiler发布
机器学习研究会
5+阅读 · 2017年10月7日
Arxiv
0+阅读 · 2021年12月14日
The Evolved Transformer
Arxiv
5+阅读 · 2019年1月30日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】基于TVM工具链的深度学习编译器 NNVM compiler发布
机器学习研究会
5+阅读 · 2017年10月7日
Top
微信扫码咨询专知VIP会员