Graph neural networks (GNNs) are emerging in chemical engineering for the end-to-end learning of physicochemical properties based on molecular graphs. A key element of GNNs is the pooling function which combines atom feature vectors into molecular fingerprints. Most previous works use a standard pooling function to predict a variety of properties. However, unsuitable pooling functions can lead to unphysical GNNs that poorly generalize. We compare and select meaningful GNN pooling methods based on physical knowledge about the learned properties. The impact of physical pooling functions is demonstrated with molecular properties calculated from quantum mechanical computations. We also compare our results to the recent set2set pooling approach. We recommend using sum pooling for the prediction of properties that depend on molecular size and compare pooling functions for properties that are molecular size-independent. Overall, we show that the use of physical pooling functions significantly enhances generalization.
翻译:在化学工程中,正在出现基于分子图的物理化学特性端到端学习的图形神经网络(GNNs),GNNs的一个关键要素是将原子特性矢量结合成分子指纹的集合功能。大多数以前的工作都使用标准集合功能来预测各种特性。然而,不适当的集合功能可能导致非物理的GNNs不很笼统。我们根据对所学特性的物理知识比较和选择有意义的GNN集合方法。物理集合功能的影响通过量子机械计算计算出的分子特性来证明。我们还将我们的结果与最近的Set2set集合方法进行比较。我们建议使用集合来预测取决于分子大小的特性,并对分子大小不独立的特性的集合功能进行比较。总体而言,我们表明,物理集合功能的使用大大加强了一般化。