Catalytic prior distributions provide general, easy-to-use and interpretable specifications of prior distributions for Bayesian analysis. They are particularly beneficial when observed data are inadequate to well-estimate a complex target model. A catalytic prior distribution is constructed by augmenting the observed data with synthetic data that are sampled from the predictive distribution of a simpler model estimated from the observed data. We illustrate the usefulness of the catalytic prior approach in an example from labor economics. In the example, the resulting Bayesian inference reflects many important aspects of the observed data, and the estimation accuracy and predictive performance of the inference based on the catalytic prior are superior to, or comparable to, that of other commonly used prior distributions. We further explore the connection between the catalytic prior approach and a few popular regularization methods. We expect the catalytic prior approach to be useful in many applications.
翻译:以前分发的催化剂为巴伊西亚分析提供了一般的、容易使用的和可解释的先前分发的规格,当观察到的数据不足以充分估计一个复杂的目标模型时,特别有益。以前分发的催化剂是用从所观察到的数据的预测性分发中抽样的合成数据来制造的。我们用劳工经济学的一个实例来说明以前采用的催化方法的效用。例如,由此得出的巴伊西亚推论反映了所观察到的数据的许多重要方面,根据以前使用的催化剂推论的估计准确性和预测性能优于或可与其他以前常用的分发方法相比。我们进一步探讨以前采用的催化剂方法与少数流行的正规化方法之间的联系。我们期望以前采用的催化方法在许多应用中有用。