The supervised learning problem to determine a neural network approximation $\mathbb{R}^d\ni x\mapsto\sum_{k=1}^K\hat\beta_k e^{{\mathrm{i}}\omega_k\cdot x}$ with one hidden layer is studied as a random Fourier features algorithm. The Fourier features, i.e., the frequencies $\omega_k\in\mathbb{R}^d$, are sampled using an adaptive Metropolis sampler. The Metropolis test accepts proposal frequencies $\omega_k'$, having corresponding amplitudes $\hat\beta_k'$, with the probability $\min\big\{1, (|\hat\beta_k'|/|\hat\beta_k|)^\gamma\big\}$, for a certain positive parameter $\gamma$, determined by minimizing the approximation error for given computational work. This adaptive, non-parametric stochastic method leads asymptotically, as $K\to\infty$, to equidistributed amplitudes $|\hat\beta_k|$, analogous to deterministic adaptive algorithms for differential equations. The equidistributed amplitudes are shown to asymptotically correspond to the optimal density for independent samples in random Fourier features methods. Numerical evidence is provided in order to demonstrate the approximation properties and efficiency of the proposed algorithm. The algorithm is tested both on synthetic data and a real-world high-dimensional benchmark.
翻译:用于确定包含一个隐藏层的神经网络近似 $mathbb{R\\ d\ d\ nixmapsto\ sum\ k=1\ k\ k\\\\ k\ k\ kddock x} 的监管学习问题作为随机 Fleier 特性算法来研究。 Fourier 特性, 即频率 $\ omega_ k\ k\ in\ mathb{ R\ d$, 是通过一个适应性大都会取样器抽样的。 大都会测试接受建议频率 $\ omga_ k', 具有对应的振动特性 $\ hate\ beta_ k emat_ k$, 和 $\ beta_ kdddroupreal 等值的匹配值, 用于对正性参数 $\ gammamambrial 进行调控。 这种适应性、 非对等式的算性方法在公式中, 美元\\\\ aqretial deal deal devaltial dealalalalalal dequidealal dequidestrational exal as as devidudududeal 。