Autonomous driving research currently faces data sparsity in representation of risky scenarios. Such data is both difficult to obtain ethically in the real world, and unreliable to obtain via simulation. Recent advances in virtual reality (VR) driving simulators lower barriers to tackling this problem in simulation. We propose the first data collection framework for risky scenario driving data from real humans using VR, as well as accompanying numerical driving personality characterizations. We validate the resulting dataset with statistical analyses and model driving behavior with an eight-factor personality vector based on the Multi-dimensional Driving Style Inventory (MDSI). Our method, dataset, and analyses show that realistic driving personalities can be modeled without deep learning or large datasets to complement autonomous driving research.
翻译:自主驱动研究目前面临着代表风险假设情况的数据宽度。 这些数据在现实世界中很难获得,而且不可靠。 虚拟现实(VR)驱动模拟器的最新进展降低了在模拟中解决这一问题的障碍。 我们提出了第一个风险假设驱动数据数据收集框架,用于使用VR(VR)以及伴随的数字驱动个性特征特征特征。 我们用统计分析和模型驱动行为来验证由此产生的数据集,根据多维驱动风格目录(MDSI)用8个因素个个性矢量进行统计分析和模型驱动行为。 我们的方法、数据集和分析显示,现实驾驶人格可以在不进行深层学习或大数据集以补充自主驱动研究的情况下进行模拟。</s>