In intelligent transportation system, the key problem of traffic forecasting is how to extract the periodic temporal dependencies and complex spatial correlation. Current state-of-the-art methods for traffic flow prediction are based on graph architectures and sequence learning models, but they do not fully exploit spatial-temporal dynamic information in traffic system. Specifically, the temporal dependence of short-range is diluted by recurrent neural networks, and existing sequence model ignores local spatial information because the convolution operation uses global average pooling. Besides, there will be some traffic accidents during the transitions of objects causing congestion in the real world that trigger increased prediction deviation. To overcome these challenges, we propose the Spatial-Temporal Conv-sequence Learning (STCL), in which a focused temporal block uses unidirectional convolution to effectively capture short-term periodic temporal dependence, and a spatial-temporal fusion module is able to extract the dependencies of both interactions and decrease the feature dimensions. Moreover, the accidents features impact on local traffic congestion and position encoding is employed to detect anomalies in complex traffic situations. We conduct extensive experiments on large-scale real-world tasks and verify the effectiveness of our proposed method.
翻译:在智能运输系统中,交通流量预测的关键问题是如何提取周期性时间依赖性和复杂的空间相关关系。目前的交通流量预测最新方法以图表结构和序列学习模型为基础,但并未充分利用交通系统中的空间时空动态信息。具体地说,由于经常神经网络的循环,短距离的暂时依赖性被淡化,而现有的序列模型忽视了当地空间信息,因为革命行动使用全球平均集合。此外,在现实世界造成拥堵的物体过渡期间,将发生一些交通事故,从而导致预测偏差增加。为了克服这些挑战,我们提议采用空间-时空后继学习(STCL),其中重点的时块利用单向变化来有效捕捉短期的周期性时间依赖性,而空间-时空融合模块能够消除相互作用和减少特征层面的依赖性。此外,对当地交通拥堵和位置编码的事故特征影响将被用于发现复杂交通情况中的异常现象。我们广泛试验了大规模现实世界任务,并核查我们拟议方法的有效性。