Programs with a continuous state space or that interact with physical processes often require notions of equivalence going beyond the standard binary setting in which equivalence either holds or does not hold. In this paper we explore the idea of equivalence taking values in a quantale V, which covers the cases of (in)equations and (ultra)metric equations among others. Our main result is the introduction of a V-equational deductive system for linear {\lambda}-calculus together with a proof that it is sound and complete. In fact we go further than this, by showing that linear {\lambda}-theories based on this V-equational system form a category that is equivalent to a category of autonomous categories enriched over 'generalised metric spaces'. If we instantiate this result to inequations, we get an equivalence with autonomous categories enriched over partial orders. In the case of (ultra)metric equations, we get an equivalence with autonomous categories enriched over (ultra)metric spaces. We additionally show that this syntax-semantics correspondence extends to the affine setting. We use our results to develop examples of inequational and metric equational systems for higher-order programming in the setting of real-time, probabilistic, and quantum computing.
翻译:具有连续状态空间或与物理过程互动的程序往往需要超越标准二进制设置的等同概念,而标准二进制设置是等同的,这种二进制要么维持,要么不维持。在本文件中,我们探讨了等等同概念的概念,这个四等方程包括( in)qualation 和(ultra) 度方程式等同等方程式。我们的主要结果是对线性(lambda) 量衡法引入V-equal exqual exculual system,同时证明它是健全和完整的。事实上,我们更进一步地展示了基于这个五等分法系统的线性(lambda)-理论,这个类别相当于一个在“通用度空间”上丰富的自主类别。如果我们对等同结果进行反调,我们就会与以部分定序方式丰富了自主的类别取得等同。在(ultra) 度方程空间上,我们又展示了这种以V- lambda}- 理论对等法的理论, 和基于这个V- qual- commal- prical- gration gration graphal graphal graphal comm gration- commacal graphal- graphal- macal- sal- commal- commal- macal- commacal- commal- commal- commal- commal- sal- sal- sal- commal- commal- smacal- commal- commmental- squcal- smaxmal- sal- sal- smaxmal- squcal-xmal- squcal- squcal-x.