We present the first deep implicit 3D morphable model (i3DMM) of full heads. Unlike earlier morphable face models it not only captures identity-specific geometry, texture, and expressions of the frontal face, but also models the entire head, including hair. We collect a new dataset consisting of 64 people with different expressions and hairstyles to train i3DMM. Our approach has the following favorable properties: (i) It is the first full head morphable model that includes hair. (ii) In contrast to mesh-based models it can be trained on merely rigidly aligned scans, without requiring difficult non-rigid registration. (iii) We design a novel architecture to decouple the shape model into an implicit reference shape and a deformation of this reference shape. With that, dense correspondences between shapes can be learned implicitly. (iv) This architecture allows us to semantically disentangle the geometry and color components, as color is learned in the reference space. Geometry is further disentangled as identity, expressions, and hairstyle, while color is disentangled as identity and hairstyle components. We show the merits of i3DMM using ablation studies, comparisons to state-of-the-art models, and applications such as semantic head editing and texture transfer. We will make our model publicly available.
翻译:我们展示了第一个深度隐含的3D全头变形模型(i3DMM) 。 与早先的变形面模型不同, 它不仅能够捕捉身份特定几何、 纹理和前脸的表达方式, 而且还可以模拟整个头部, 包括头发。 我们收集了由64个不同表达式和发型的人组成的新数据集来训练 i3DMM。 我们的方法具有以下有利的属性:(一) 它是第一个包括毛发在内的全头变形模型。 (二) 与基于网状的模型不同, 它可以仅仅用僵硬的对齐扫描来训练, 而不需要困难的非硬化登记。 (三) 我们设计了一个新的结构, 将形状模型的形状分解成一个隐含的参考形状和形状的变形。 有了这样的形状可以隐性对应性, 这个结构可以让我们在参考空间中学习到的几何色的几何形状和颜色模型。 与网形模型进一步分解为身份、 、 和发型扫描, 同时颜色是模糊化的, 以身份和发型模型的形式比较方式作为身份和变形的属性的特征分析。 我们以辨化为身份和变形模型的优点作为身份和变形的特征学为特征和变形, 我们以身份和变形的图制成为正态研究,, 我们以辨化为身份和变形为身份和变形为身份和变形模型的图制成为身份和发式的图式的图式的模型的图。