This paper presents a novel control approach for autonomous systems operating under uncertainty. We combine Model Predictive Path Integral (MPPI) control with Covariance Steering (CS) theory to obtain a robust controller for general nonlinear systems. The proposed Covariance-Controlled Model Predictive Path Integral (CC-MPPI) controller addresses the performance degradation observed in some MPPI implementations owing to unexpected disturbances and uncertainties. Namely, in cases where the environment changes too fast or the simulated dynamics during the MPPI rollouts do not capture the noise and uncertainty in the actual dynamics, the baseline MPPI implementation may lead to divergence. The proposed CC-MPPI controller avoids divergence by controlling the dispersion of the rollout trajectories at the end of the prediction horizon. Furthermore, the CC-MPPI has adjustable trajectory sampling distributions that can be changed according to the environment to achieve efficient sampling. Numerical examples using a ground vehicle navigating in challenging environments demonstrate the proposed approach.
翻译:本文介绍了对在不确定情况下运作的自主系统的一种新型控制方法。我们将模型预测路径综合控制与常态指导理论结合起来,以获得对一般非线性系统强有力的控制器。拟议的“常态控制模型预测路径综合控制器”处理某些移动电话价格指数实施过程中由于意外干扰和不确定性而观察到的性能退化问题。也就是说,如果环境变化过快或移动电话伙伴关系倡议推出期间模拟动态没有反映实际动态中的噪音和不确定性,则基线的移动电话综合控制器的实施可能导致差异。拟议的CC-MPPI控制器通过控制预测地平线末端的发射轨迹分布而避免差异。此外,CC-MPPI拥有可调整的轨迹抽样分布,这些分布可根据环境加以调整,以便实现高效采样。在具有挑战性的环境中使用地面车辆巡航的数值示例显示了拟议方法。