The success of neural networks (NNs) in a wide range of applications has led to increased interest in understanding the underlying learning dynamics of these models. In this paper, we go beyond mere descriptions of the learning dynamics by taking a graph perspective and investigating the relationship between the graph structure of NNs and their performance. Specifically, we propose (1) representing the neural network learning process as a time-evolving graph (i.e., a series of static graph snapshots over epochs), (2) capturing the structural changes of the NN during the training phase in a simple temporal summary, and (3) leveraging the structural summary to predict the accuracy of the underlying NN in a classification or regression task. For the dynamic graph representation of NNs, we explore structural representations for fully-connected and convolutional layers, which are key components of powerful NN models. Our analysis shows that a simple summary of graph statistics, such as weighted degree and eigenvector centrality, over just a few epochs can be used to accurately predict the performance of NNs. For example, a weighted degree-based summary of the time-evolving graph that is constructed based on 5 training epochs of the LeNet architecture achieves classification accuracy of over 93%. Our findings are consistent for different NN architectures, including LeNet, VGG, AlexNet and ResNet.


翻译:神经网络(NNs)在广泛的应用中的成功导致人们更加关注理解这些模型的基本学习动态。在本文中,我们不仅仅通过用图表视角描述学习动态,还调查NNs图表结构及其性能之间的关系。具体地说,我们提议(1) 将神经网络学习过程作为时间变化的图表(即一系列超越时代的静态图形快照)来代表神经网络学习过程,(2) 在一个简单的时间摘要中捕捉NNS在培训阶段的结构变化,(3) 利用结构摘要来预测分类或回归任务中NNS基础的准确性。关于NNS动态图表的表示,我们探索完全连接和动态层的结构表述,这是强大的NNN模型的关键组成部分。我们的分析表明,仅用一个简单的图表汇总,如加权度和精度中心点,可以用来精确预测NNPs在培训阶段的性能。 例如,基于时间动态图的加权度摘要,基于我们网络网络的精确度图, 包括基于五级的Le-NGS 系统结构, 的精确性结构, 建于五级的Le-NGS 的精确性结构。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
ICLR 2020会议的16篇最佳深度学习论文
AINLP
5+阅读 · 2020年5月12日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
2+阅读 · 2022年1月13日
Arxiv
3+阅读 · 2020年4月29日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
相关资讯
ICLR 2020会议的16篇最佳深度学习论文
AINLP
5+阅读 · 2020年5月12日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
2+阅读 · 2022年1月13日
Arxiv
3+阅读 · 2020年4月29日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
7+阅读 · 2018年1月10日
Top
微信扫码咨询专知VIP会员