Lesion detection in brain Magnetic Resonance Images (MRIs) remains a challenging task. MRIs are typically read and interpreted by domain experts, which is a tedious and time-consuming process. Recently, unsupervised anomaly detection (UAD) in brain MRI with deep learning has shown promising results to provide a quick, initial assessment. So far, these methods only rely on the visual appearance of healthy brain anatomy for anomaly detection. Another biomarker for abnormal brain development is the deviation between the brain age and the chronological age, which is unexplored in combination with UAD. We propose deep learning for UAD in 3D brain MRI considering additional age information. We analyze the value of age information during training, as an additional anomaly score, and systematically study several architecture concepts. Based on our analysis, we propose a novel deep learning approach for UAD with multi-task age prediction. We use clinical T1-weighted MRIs of 1735 healthy subjects and the publicly available BraTs 2019 data set for our study. Our novel approach significantly improves UAD performance with an AUC of 92.60% compared to an AUC-score of 84.37% using previous approaches without age information.
翻译:脑磁共振成像(MRIs)中脑磁共振成像(MRIs)的测分仍是一项艰巨的任务。 MRIs通常由域专家来阅读和解释,这是一个乏味和耗时的过程。最近,在深层学习的大脑MRI中,未经监督的异常检测(UAD)已经显示出令人乐观的结果,可以提供快速的初步评估。到目前为止,这些方法仅仅依靠健康的大脑解剖的视觉外观来发现异常现象。异常大脑发育的另一个生物标志是大脑年龄和时间年龄之间的偏差,而这种偏差与UAAAD(UA)MRI(UAD)结合,是尚未探索的。我们建议用3D(3D)大脑MRI(MRI)为UAD(UAD)进行深层次学习,考虑更多的年龄信息。我们分析了培训中年龄信息的价值,作为额外的异常分数,并系统研究了若干结构概念。根据我们的分析,我们建议对UAD(UD)提出一种新的深层次学习方法,用多塔克年龄预测来进行新型T1加权的1735健康对象的MIS和公开的2019数据集。我们的新方法大大改进了UAAD(AUC)的绩效,而没有使用以前的84.60 %的方法。