The dual of a planar graph $G$ is a planar graph $G^*$ that has a vertex for each face of $G$ and an edge for each pair of adjacent faces of $G$. The profound relationship between a planar graph and its dual has been the algorithmic basis for solving numerous (centralized) classical problems on planar graphs. In the distributed setting however, the only use of planar duality is for finding a recursive decomposition of $G$ [DISC 2017, STOC 2019]. We extend the distributed algorithmic toolkit to work on the dual graph $G^*$. These tools can then facilitate various algorithms on $G$ by solving a suitable dual problem on $G^*$. Given a directed planar graph $G$ with positive and negative edge-lengths and hop-diameter $D$, our key result is an $\tilde{O}(D^2)$-round algorithm for Single Source Shortest Paths on $G^*$, which then implies an $\tilde{O}(D^2)$-round algorithm for Maximum $st$-Flow on $G$. Prior to our work, no $\tilde{O}(\text{poly}(D))$-round algorithm was known for Maximum $st$-Flow. We further obtain a $D\cdot n^{o(1)}$-rounds $(1-\epsilon)$-approximation algorithm for Maximum $st$-Flow on $G$ when $G$ is undirected and $st$-planar. Finally, we give a near optimal $\tilde O(D)$-round algorithm for computing the weighted girth of $G$. The main challenges in our work are that $G^*$ is not the communication graph (e.g., a vertex of $G$ is mapped to multiple vertices of $G^*$), and that the diameter of $G^*$ can be much larger than $D$ (i.e., possibly by a linear factor). We overcome these challenges by carefully defining and maintaining subgraphs of the dual graph $G^*$ while applying the recursive decomposition on the primal graph $G$. The main technical difficulty, is that along the recursive decomposition, a face of $G$ gets shattered into (disconnected) components yet we still need to treat it as a dual node.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月19日
Arxiv
0+阅读 · 11月19日
Arxiv
0+阅读 · 11月18日
Arxiv
0+阅读 · 11月16日
Arxiv
12+阅读 · 2023年5月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关论文
Arxiv
0+阅读 · 11月19日
Arxiv
0+阅读 · 11月19日
Arxiv
0+阅读 · 11月18日
Arxiv
0+阅读 · 11月16日
Arxiv
12+阅读 · 2023年5月22日
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员