In this paper we explore the influence of some frequently used Convolutional Neural Networks (CNNs), training settings, and training set structures, on Action Unit (AU) detection. Specifically, we first compare 10 different shallow and deep CNNs in AU detection. Second, we investigate how the different training settings (i.e. centering/normalizing the inputs, using different augmentation severities, and balancing the data) impact the performance in AU detection. Third, we explore the effect of increasing the number of labelled subjects and frames in the training set on the AU detection performance. These comparisons provide the research community with useful tips about the choice of different CNNs and training settings in AU detection. In our analysis, we use a large-scale naturalistic dataset, consisting of ~55K videos captured in the wild. To the best of our knowledge, there is no work that had investigated the impact of such settings on a large-scale AU dataset.
翻译:在本文中,我们探讨了一些常用的革命神经网络(CNNs)、培训设置和培训设置结构对行动股(AU)探测的影响。具体地说,我们首先比较了非盟探测过程中10个不同的浅色和深色CNN。第二,我们调查了不同培训环境(即集中/调整投入,使用不同的增强分数,平衡数据)对非盟探测工作的影响。第三,我们探讨了在非盟探测工作培训中增加标有标签的科目和框架数量的影响。这些比较为研究界提供了关于选择不同CNN和非盟探测培训环境的有用提示。我们的分析中,我们使用了由在野生捕捉到的~55K视频组成的大型自然数据集。据我们所知,没有开展任何工作来调查这种环境对大型AU数据集的影响。