Simulation of contact mechanics in fractured media is of paramount important in the scope of computational mechanics. In this work, a preconditioned mixed-finite element scheme with Lagrange multipliers is proposed in the framework of constrained variational principle, which has the capability to handle frictional contact mechanics of the multi-crossing fractures. The slippage, opening and contact traction on fractures are calculated by the resulted saddle-point algebraic system. A novel treatment is devised to guarantee physical solutions at the intersected position of crossing fractures. A preconditioning technique is introduced to re-scale the resulting saddle-point algebraic system, to preserve the robustness of the system. An iteration strategy, namely monolithic-updated contact algorithm, is then designed to update the two primary unknowns (displacement and Lagrange multiplier) in one algebraic block. A series of numerical tests is conducted to study the contact mechanics of single- and multi-crossing fractures. Benchmark study is presented to verify the presented numerical method. Two tests with crossing fractures are studied, in which the slippage and opening can be calculated. The effects of crossing fractures on the deformation field can be observed in the calculated results, in which the variation of slippage/opening is analyzed by different loading conditions.


翻译:在计算力范围内,模拟断裂介质中的接触力是极为重要的。在这项工作中,在受限制的变异原则的框架内,提出了带有拉格朗变异性乘数的具有先决条件的混合点元素计划,它能够处理多交叉断裂的摩擦性接触力。骨折的滑坡、开口和接触力牵引由结果的马鞍点代数系统计算。设计了一种新颖的处理办法,以保障交叉骨折交叉位置的物理解决方案。采用了一种先决条件技术,以重新标定由此形成的马鞍点代数系统,以保持系统的稳健性。迭代战略,即单滑动式更新接触算法,然后设计用来更新一个代数区的两个主要未知点(变异和拉格朗特倍增力)。进行了一系列数字测试,以研究单一和多交叉骨折的接触力。基准研究是为了核实所提出的数字方法。正在对交叉骨折进行两次测试,在其中可以观测到滑坡和开关结果的跨断层条件。通过分析,可以计算出不同方向的折变换结果。

0
下载
关闭预览

相关内容

在数学优化中,拉格朗日乘数法是一种用于寻找受等式约束的函数的局部最大值和最小值的策略(即,必须满足所选变量值必须完全满足一个或多个方程式的条件)。它以数学家约瑟夫·路易斯·拉格朗日命名。基本思想是将受约束的问题转换为某种形式,以便仍可以应用无约束问题的派生检验。函数的梯度与约束的梯度之间的关系很自然地导致了原始问题的重构,即拉格朗日函数。
专知会员服务
51+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
39+阅读 · 2020年9月6日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
“CVPR 2020 接受论文列表 1470篇论文都在这了
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
39+阅读 · 2020年9月6日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员