Solving the normal equations corresponding to large sparse linear least-squares problems is an important and challenging problem. For very large problems, an iterative solver is needed and, in general, a preconditioner is required to achieve good convergence. In recent years, a number of preconditioners have been proposed. These are largely serial and reported results demonstrate that none of the commonly used preconditioners for the normal equations matrix is capable of solving all sparse least-squares problems. Our interest is thus in designing new preconditioners for the normal equations that are efficient, robust, and can be implemented in parallel. Our proposed preconditioners can be constructed efficiently and algebraically without any knowledge of the problem and without any assumption on the least-squares matrix except that it is sparse. We exploit the structure of the symmetric positive definite normal equations matrix and use the concept of algebraic local symmetric positive semi-definite splittings to introduce two-level Schwarz preconditioners for least-squares problems. The condition number of the preconditioned normal equations is shown to be theoretically bounded independently of the number of subdomains in the splitting. This upper bound can be adjusted using a single parameter $\tau$ that the user can specify. We discuss how the new preconditioners can be implemented on top of the PETSc library using only 150 lines of Fortran, C, or Python code. Problems arising from practical applications are used to compare the performance of the proposed new preconditioner with that of other preconditioners.
翻译:解决与大量稀少的线性最小方块问题相对应的正常方程式是一个重要而具有挑战性的问题。 对于非常大的问题,需要一个迭代求解器,一般来说,需要有一个先决条件来达成良好的趋同。近年来,提出了一些先决条件。这些基本是系列性的,报告的结果显示,通常方方块通常使用的前提条件没有一个能够解决所有稀少的最小方块问题。因此,我们感兴趣的是设计新的普通方块的先决条件,这些先决条件是高效、稳健的,并且可以同时实施。我们提出的先决条件可以高效和代数地构建,而不必对问题有任何了解,而且一般来说,还需要有一个先决条件。在最小方块矩阵上没有任何假设,但条件是稀少的除外。我们利用正对正正正正正正方方方块矩阵的结构,并使用方块正对正半方方块断裂的概念,为最小方块问题的Schwarz前方方块前方方方方块设计新的先决条件。我们提出的正常方块的方块号将显示在理论上对准的应用程序进行约束性化的应用程序,使用新方块前方块前方块前方块前方块前方块的比。我们可以独立地使用前方块前方块前方块前方块前方块的Srealexrederederedereal 。我们可以使用前方块前方块前方块的正方块前方块前方块的Sreabderedereal 。我们方块的硬的硬的Sderederedereal 。在前方块里程,可以使用新的前方块里程,可以使用新的前方块前方块里程,可以使用新的前方块里程,在前方块里程,在前方块里程中可以使用新的前方块里程,在前方块里程中可以使用前方块里程,在前方块里程中使用新的前方码,在前方程中可以使用前方程中进行新的前方码,可以使用前方程式,在前方程中可以独立地路路路路路路路路路段里程的硬。