Knowledge-based leader-following synchronization of heterogeneous nonlinear multi-agent systems is a challenging problem since the leader's dynamic information is unknown to any follower node. This paper proposes a learning-based fully distributed observer for a class of nonlinear leader systems, which can simultaneously learn the leader's dynamics and states. This class of leader dynamics is rather general and does not require a bounded Jacobian matrix. Based on this learning-based distributed observer, we further synthesize an adaptive distributed control law for solving the leader-following synchronization problem of multiple Euler-Lagrange systems subject to an uncertain nonlinear leader system. The results are illustrated by a simulation example.
翻译:以知识为基础的领导者跟踪多元非线性多试剂系统的同步是一个具有挑战性的问题,因为任何追随者节点都不了解领导者的动态信息。 本文提议为一组非线性领导系统提供一个基于学习的分布齐全的观察员,这些非线性领导系统可以同时学习领导者的动态和状态。 这一类领导者动态相当笼统,不需要一个相互捆绑的雅各布矩阵。 基于这个以学习为基础的分布式观察者,我们进一步综合了一项适应性分布式控制法,以解决由不确定的非线性领导系统管理的多个欧勒拉格拉格系统的领导者跟踪同步问题。 模拟实例说明了结果。