Client-server sessions are based on a variation of the traditional interpretation of linear logic propositions as session types in which non-linear channels (those regulating the interaction between a pool of clients and a single server) are typed by coexponentials instead of the usual exponentials. Coexponentials enable the modeling of racing interactions, whereby clients compete to interact with a single server whose internal state (and thus the offered service) may change as the server processes requests sequentially. In this work we present a fair termination result for CSLL$^\infty$, a core calculus of client-server sessions. We design a type system such that every well-typed term corresponds to a valid derivation in $\mu$MALL$^\infty$, the infinitary proof theory of linear logic with least and greatest fixed points. We then establish a correspondence between reductions in the calculus and principal reductions in $\mu$MALL$^\infty$. Fair termination in CSLL$^\infty$ follows from cut elimination in $\mu$MALL$^\infty$.
翻译:客户- 服务器会议基于对线性逻辑假设作为会话类型的传统解释的变换,即非线性渠道(调节客户群和单一服务器之间互动的渠道)用共化的量子键而不是通常的指数键入。 共化使得能够模拟赛事互动,客户可以竞争与单一服务器互动,而该服务器的内部状态(因而提供的服务)随着服务器的处理程序依次改变而与之竞争。在这项工作中,我们为客户-服务器会议的核心微分(CSLL$ infty$,即客户-服务器会议的核心微分)提出了一个公平的终止结果。我们设计了一种类型的系统,每个井型术语都符合以美元计算出的正确推算法,即以最小和最大固定点计算的线性逻辑的绝对证据理论。然后,我们建立了微量值的削减与以美元计算的主要削减之间的对应关系,以美元计算。