Current methods for learning realistic and animatable 3D clothed avatars need either posed 3D scans or 2D images with carefully controlled user poses. In contrast, our goal is to learn the avatar from only 2D images of people in unconstrained poses. Given a set of images, our method estimates a detailed 3D surface from each image and then combines these into an animatable avatar. Implicit functions are well suited to the first task, as they can capture details like hair or clothes. Current methods, however, are not robust to varied human poses and often produce 3D surfaces with broken or disembodied limbs, missing details, or non-human shapes. The problem is that these methods use global feature encoders that are sensitive to global pose. To address this, we propose ICON ("Implicit Clothed humans Obtained from Normals"), which uses local features, instead. ICON has two main modules, both of which exploit the SMPL(-X) body model. First, ICON infers detailed clothed-human normals (front/back) conditioned on the SMPL(-X) normals. Second, a visibility-aware implicit surface regressor produces an iso-surface of a human occupancy field. Importantly, at inference time, a feedback loop alternates between refining the SMPL(-X) mesh using the inferred clothed normals and then refining the normals. Given multiple reconstructed frames of a subject in varied poses, we use SCANimate to produce an animatable avatar from them. Evaluation on the AGORA and CAPE datasets shows that ICON outperforms the state of the art in reconstruction, even with heavily limited training data. Additionally, it is much more robust to out-of-distribution samples, e.g., in-the-wild poses/images and out-of-frame cropping. ICON takes a step towards robust 3D clothed human reconstruction from in-the-wild images. This enables creating avatars directly from video with personalized and natural pose-dependent cloth deformation.


翻译:用于学习现实和可想象的 3D 衣着的 3D 的当前方法需要要么是3D 扫描,要么是2D 图像,并配有精心控制的用户配置。相比之下,我们的目标是从仅2D 图像中学习处于不受控制状态的人的2D 图像。根据一组图像,我们的方法估计每个图像都有详细的 3D 表面,然后将这些图像合并成可想象的变形。 隐含功能非常适合第一个任务, 因为它们可以捕捉头发或衣服等细节。 然而, 当前的方法对于不同的人类姿势并不强大, 并且常常产生3D 表面的变形, 缺乏细节, 或者非人类形状。 问题在于这些方法使用全球特征的2D的变形编码。 为了解决这个问题,我们建议 ICON (“不透明的人从正常的变色人”, 使用本地的变色的变色的变色的变色变。 ICON有两种主要模块, 利用SMPL (- X) 结构的变色的变变形模型, 和变色的变形的变形的变形, 将一个正常变形的变形的变形的变的变形, 在SMA的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形中, 的变的变形的变形的变形变形的变的变的变的变的变形的变的变的变的变形, 。

0
下载
关闭预览

相关内容

 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
28+阅读 · 2020年5月19日
Uber AI NeurIPS 2019《元学习meta-learning》教程,附92页PPT下载
专知会员服务
112+阅读 · 2019年12月13日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
已删除
将门创投
4+阅读 · 2017年11月1日
SwapText: Image Based Texts Transfer in Scenes
Arxiv
4+阅读 · 2020年3月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
已删除
将门创投
4+阅读 · 2017年11月1日
Top
微信扫码咨询专知VIP会员