We propose a new geometrically unfitted finite element method based on discontinuous Trefftz ansatz spaces. When considering discontinuous Galerkin methods, one is often faced with the solution of large linear systems, especially in the case of higher-order discretisations. Trefftz discontinuous Galerkin methods allow for a reduction in the number of degrees of freedom and, thereby, the costs for solving arising linear systems significantly. In this work, we combine the concepts of geometrically unfitted finite element methods and Trefftz discontinuous Galerkin methods. From the combination of different ansatz spaces and stabilisations, we discuss a class of robust unfitted discretisations and derive a-priori error bounds, including errors arising from geometry approximation for the discretisation of a Poisson problem in a unified manner. Numerical examples validate the theoretical findings and demonstrate the potential of the approach.
翻译:我们提出了一种基于不连续Trefftz假设空间的新的几何非匹配有限元方法。当考虑不连续有限元方法时,人们经常面临着解决大型线性系统的问题,特别是在高阶离散化的情况下。Trefftz不连续有限元方法允许减少自由度的数量,从而显著降低求解产生的线性系统的成本。在这项工作中,我们结合了几何非匹配有限元方法和Trefftz不连续有限元方法的概念。通过不同假设空间和稳定技术的组合,我们讨论了一类稳健的非匹配离散化方法,并以统一的方式推导了包括几何逼近误差在内的a-priori误差界。数值实例验证了理论结果,并展示了该方法的潜力。