Deep learning affords enormous opportunities to augment the armamentarium of biomedical imaging, albeit its design and implementation have potential flaws. Fundamentally, most deep learning models are driven entirely by data without consideration of any prior knowledge, which dramatically increases the complexity of neural networks and limits the application scope and model generalizability. Here we establish a geometry-informed deep learning framework for ultra-sparse 3D tomographic image reconstruction. We introduce a novel mechanism for integrating geometric priors of the imaging system. We demonstrate that the seamless inclusion of known priors is essential to enhance the performance of 3D volumetric computed tomography imaging with ultra-sparse sampling. The study opens new avenues for data-driven biomedical imaging and promises to provide substantially improved imaging tools for various clinical imaging and image-guided interventions.
翻译:深层学习为扩大生物医学成像的成像设备提供了巨大的机会,尽管其设计和实施存在潜在的缺陷。 从根本上说,大部分深层学习模式完全由数据驱动,而没有考虑到任何先前的知识,这大大增加了神经网络的复杂性,限制了应用范围和模型的可概括性。 我们在这里为超粗的3D成像重建建立了一个基于几何学的深层学习框架。 我们引入了将成像系统的几何前科整合在一起的新机制。 我们证明,无缝地纳入已知的前科对于提高3D量子计算成像和超粗抽样取样的性能至关重要。 这项研究为数据驱动的生物医学成像服务开辟了新的途径,并承诺为各种临床成像和图像制导干预措施提供大为改善的成像工具。