Domain adaptation is an important challenge for neural machine translation. However, the traditional fine-tuning solution requires multiple extra training and yields a high cost. In this paper, we propose a non-tuning paradigm, resolving domain adaptation with a prompt-based method. Specifically, we construct a bilingual phrase-level database and retrieve relevant pairs from it as a prompt for the input sentences. By utilizing Retrieved Phrase-level Prompts (RePP), we effectively boost the translation quality. Experiments show that our method improves domain-specific machine translation for 6.2 BLEU scores and improves translation constraints for 11.5% accuracy without additional training.
翻译:域适应是神经机翻译的一个重要挑战。 然而, 传统的微调解决方案需要多重额外培训并产生高额成本。 在本文中, 我们提出一个非调整模式, 以快速法解决域适应问题。 具体地说, 我们建了一个双语词级数据库, 并从中检索相关配对, 作为输入句子的提示。 我们通过使用retrieved Phrase- laints(RePP), 有效提升翻译质量。 实验显示, 我们的方法改进了6.2 BLEU分的域别机器翻译, 并在没有额外培训的情况下提高了11.5%的精确度。