The COVID-19 pandemic generated a considerable debate in relation to urban density. This is an old debate, originated in mid 19th century's England with the emergence of public health and urban planning disciplines. While popularly linked, evidence suggests that such relationship cannot be generally assumed. Furthermore, urban density has been investigated in a spatially coarse manner (predominantly at city level) and never contextualised with other descriptors of urban form. In this work, we explore COVID-19 and urban form in Greater London, relating a comprehensive set of morphometric descriptors (including built-up density) to COVID-19 deaths and cases, while controlling for socioeconomic, ethnicity, age, and co-morbidity. We describe urban form at individual building level and then aggregate information for official neighbourhoods, allowing for a detailed intra-urban representation. Results show that: i) control variables significantly explain more variance of both COVID-19 cases and deaths than the morphometric descriptors; ii) of what the latter can explain, built-up density is indeed the most associated, though inversely. The typical London neighbourhood with high levels of COVID-19 infections and deaths resembles a suburb, featuring a low-density urban fabric dotted by larger free-standing buildings and framed by a poorly inter-connected street network.


翻译:COVID-19大流行在城市密度方面引发了相当大的辩论,这是一个古老的辩论,起源于19世纪中叶的英格兰,出现了公共卫生和城市规划学科。虽然与公众密切相关,但证据表明这种关系不能被普遍假定。此外,城市密度是以空间粗糙的方式(主要在城市一级)调查的,从未与城市形式的其他描述者联系。在这项工作中,我们探索COVID-19和大伦敦的城市形式,涉及一套全面的COVID-19死亡和案例(包括累积密度),同时控制社会经济、族裔、年龄和共同发病率。我们描述的是个人建筑一级的城市形式,然后是官方居民区的综合信息,允许详细的城市内代表性。结果显示:(一) 控制变量可以大大解释COVID-19案件和死亡的差别大于光度描述的描述者;二) 后者可以解释的是,建造的密度确实是最相关联的,尽管是相反的,同时控制着社会经济、族裔、年龄和共同死亡率。我们描述的是,典型的伦敦居民区在单个建筑一级,由高程度的CVI-19型的市际网络构成的低程度和低程度的市际感染和低程度的都市间网络。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月17日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员