We study the fairness of dynamic resource allocation problem under the $\alpha$-fairness criterion. We recognize two different fairness objectives that naturally arise in this problem: the well-understood slot-fairness objective that aims to ensure fairness at every timeslot, and the less explored horizon-fairness objective that aims to ensure fairness across utilities accumulated over a time horizon. We argue that horizon-fairness comes at a lower price in terms of social welfare. We study horizon-fairness with the regret as a performance metric and show that vanishing regret cannot be achieved in presence of an unrestricted adversary. We propose restrictions on the adversary's capabilities corresponding to realistic scenarios and an online policy that indeed guarantees vanishing regret under these restrictions. We demonstrate the applicability of the proposed fairness framework to a representative resource management problem considering a virtualized caching system where different caches cooperate to serve content requests.
翻译:我们根据alpha$-公平标准研究动态资源分配问题的公平性。我们认识到这个问题自然产生的两个不同的公平性目标:确保每个时间点的公平性目标,以及旨在确保在一个时间点所积累的公用事业的公平性的探索较少的视野公平性目标。我们认为,从社会福利的角度来看,前景公平性的代价较低。我们把遗憾作为一种业绩衡量标准来研究前景公平性,并表明在不受限制的对手面前不可能实现消失的遗憾。我们提议限制对手与现实情景相对应的能力,并提议一项在线政策,保证在这些限制下消除遗憾。我们证明,拟议的公平性框架适用于具有代表性的资源管理问题,因为考虑到一个虚拟化的缓冲系统,不同缓冲器可以合作满足内容请求。