A temporal graph is a graph in which edges are assigned a time label. Two nodes u and v of a temporal graph are connected one to the other if there exists a path from u to v with increasing edge time labels. We consider the problem of assigning time labels to the edges of a digraph in order to maximize the total reachability of the resulting temporal graph (that is, the number of pairs of nodes which are connected one to the other). In particular, we prove that this problem is NP-hard. We then conjecture that the problem is approximable within a constant approximation ratio. This conjecture is a consequence of the following graph theoretic conjecture: any strongly connected directed graph with n nodes admits an out-arborescence and an in-arborescence that are edge-disjoint, have the same root, and each spans $\Omega$(n) nodes.
翻译:一个时间图是一个图,在其中已经为边分配了时间标签。 如果存在从u到v的路径,则时间标签递增的边将连接时间图的两个节点u和v。 我们考虑为有向图的边分配时间标签的问题,以最大化所得到的时间图的总可达性(即相互连接的节点对的数量)。 特别地,我们证明了这个问题是NP难的。 然后我们猜想这个问题可以在常数近似比内近似。 这个猜想是下面的图论猜想的结论:任何具有n个节点的强连通有向图都有一个出度为树和一个入度为树,它们是边不相交的,在根处相同,并且每个都包含$\Omega$(n)个节点。