Knowledge Graph Question Answering (KGQA) involves retrieving entities as answers from a Knowledge Graph (KG) using natural language queries. The challenge is to learn to reason over question-relevant KG facts that traverse KG entities and lead to the question answers. To facilitate reasoning, the question is decoded into instructions, which are dense question representations used to guide the KG traversals. However, if the derived instructions do not exactly match the underlying KG information, they may lead to reasoning under irrelevant context. Our method, termed ReaRev, introduces a new way to KGQA reasoning with respect to both instruction decoding and execution. To improve instruction decoding, we perform reasoning in an adaptive manner, where KG-aware information is used to iteratively update the initial instructions. To improve instruction execution, we emulate breadth-first search (BFS) with graph neural networks (GNNs). The BFS strategy treats the instructions as a set and allows our method to decide on their execution order on the fly. Experimental results on three KGQA benchmarks demonstrate the ReaRev's effectiveness compared with previous state-of-the-art, especially when the KG is incomplete or when we tackle complex questions. Our code is publicly available at https://github.com/cmavro/ReaRev_KGQA.


翻译:知识图解答( KGQA ) 涉及从使用自然语言查询的知识图( KG) 中检索实体的答案。 挑战是如何学会如何解释与问题相关的KG事实, 这些事实贯穿着 KG 实体, 并导致问题解答。 为了便于推理, 这个问题被解码成指示, 它们是用于指导 KG Trainersal 的密集问题表达器。 但是, 如果导出的指示不完全符合基本 KG 信息, 它们可能导致在不相关的背景下进行推理 。 我们的方法叫做 ReaRev, 引入了KGQA 在教学解码和执行方面进行推理的新方法。 为了改进教学解码, 我们用KG-aware信息反复更新初始指示。 为了改进教学执行, 我们用图形神经网络( GNNS ) 进行宽度第一次搜索( BFS) 。 BFS 战略将这些指示当作一个设置, 并允许我们决定其执行命令的方法 。 在三个 KGQA 基准上实验结果, 当我们无法完全使用 KG/Requal 时, 当我们无法使用之前的 KG/ requal 解算时, 。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关VIP内容
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员