Training semantic segmentation models on multiple datasets has sparked a lot of recent interest in the computer vision community. This interest has been motivated by expensive annotations and a desire to achieve proficiency across multiple visual domains. However, established datasets have mutually incompatible labels which disrupt principled inference in the wild. We address this issue by automatic construction of universal taxonomies through iterative dataset integration. Our method detects subset-superset relationships between dataset-specific labels, and supports learning of sub-class logits by treating super-classes as partial labels. We present experiments on collections of standard datasets and demonstrate competitive generalization performance with respect to previous work.
翻译:培训多数据集的语义分解模型引起了计算机视觉界最近的许多兴趣。这种兴趣的动机是昂贵的注释和在多个视觉领域达到熟练程度的愿望。然而,既定的数据集有相互不兼容的标签,它们扰乱了野生的原则推论。我们通过迭代数据集集集成自动构建通用分类来解决这个问题。我们的方法通过将超级类类作为部分标签来检测特定数据集标签之间的子集-超集关系,并支持学习子类登录。我们介绍了标准数据集的收集实验,并展示了与以往工作相关的竞争性概括性业绩。